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SCATTERING OF TONE BURSTS FROM SPHERICAL SHELLS:
COMPUTATIONS BASED ON
FOURIER TRANSFORM METHOD

Abstract

by Ligang Zhang, M.S.
Washington State University

August 1991

Chair: Philip L. Marston

An algorithm to compute the transient scattering of sound by elastic spheres and
shells has been developed and tested. Short tone bursts incident on elastic spherical shells
under various conditions have been investigated. Previous experiment results for elastic
spheres and shells have been confirmed. Some interesting physical aspects concerning the
basics of the scattering mechanism have been detected. A mid-frequency enhancement has
been examined for thin shells and compared with the ray model results. The ray model is
found to closely approximate the enhanced backscattering for tone bursts associated with a
subsonic wave on thin shells. A related filter-like effect of thin shells for the selected
frequencies has been detected and quantitatively described and the impulse response has
been computed. The present computations can be of practical use and can be compared
with observations or ray models of the scattering from shells under the same conditions if
such observations or models become available later on. The scattering of tone bursts from
shells was calculated when the carrier frequency is at or close to the frequency of resonance

associated with a reverberation of longitudinal waves across the thickness of the shell.




When the shell is a fluid, the results are easily interpreted in terms of an existing ray model.
When the shell is elastic, they suggest the presence of a mechanism for prompt radiation

noninvolving complete circumnavigation of the sphere by guided elastic waves.
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CHAPTER 1
Introduction

Scattering from well-shaped smooth objects such as solid spheres and spherical
shells has been of interest and investigated for a long time, yet some basic physical aspects
still remain not well understood or even unknown. Recent attention has been focused on
the geometrical representation of scattering and its extension to arbitrary objects. For the
last a couple of years, Dr. Marston and his research group have done marvelous jobs on the
modeling of the scattering problem by ray synthesis method which has turned out to work
excitingly well. The modeling is, however, not perfect. There are still some unclear physics

which presumably can be seen by investigating scattering of various transient waves.

There have been numerous papers and researches on the scattering from solid
spheres and hollow spheres, nevertheless, relatively few transient experiments or
calculations can be found!-6. One of the difficulties in applying the geometrical theory of
diffraction (GTD) to elastic objects is that the contributions due to surface guided elastic
waves (SEW), such as Rayleigh and Lamb waves’8, can be important. Present work is to
compute the transient backscattering from elastic spheres and spherical shells by using the
Fourier Transform Method. This report is written in a consistent e-i®t time convention
where i = ¥-1. Results verified the previous experiments, and most importantly, have
revealed some exciting physics concerning the backscattering mechanism, hence helped
better understand the scattering process and can be helpful in further modeling of ray

method.




The arrangement of the report is as follows. First, the steady state scattering will be
briefly discussed in Chapter 2 following the introduction. Chapter 3 presents the transient
scattering formulation and the method used in the calculations. In Chapter 4, some more
detailed computational considerations can be found and tests against  previous
experimental work for elastic sphere will be conducted . Chapter 5 deals with the main part
of the report --- backscattering from elastic shells. Quite a few interesting results are
presented in this chapter. A short conclusion and discussion can be found in Chapter 6.
Appendices will present the programs used to finish the job and some illustr.tions about the
writing of the programs which can be regarded as a "user's guide". Also presented in the
appendices are some additional data and graphs for reference purpose.




CHAPTER 2

Steady-State Scattering

2.1 Far field scattering

Figure 1 illustrates a generic problem of interest. The center of an elasti~ cphere or a
smooth empty shell having a circular profile is fixed at the origin of a spherical coordinate

system.

Considering an infinitely extended incident plane pressure wave of a single

frequency travelling in the +z direction

Pj (1) =P eikz-iot = p, ¢ ik(z-ct) | @

where Po is the pressure amplitude , k=2n/A is the wavenumber, A is the wavelength and ¢
is the sound speed in the fluid. The exact PWS (Partial Wave Series) solution can be
obtained by solving the differential equations subject to proper boundary conditions. The
solution is based on the summation of infinite terms of spherical Bessel and Hankel
functions of the first kind. This response to a single frequency incident wave has been
given a widely accepted name as the reflection form function denoted here by F(ka), where
ka is the dimensionless wavenumber. Let F(ka)e-i®t be the solution for constant
frequency, then at point P, which is at a distance r>>ka2 from the center, harmonic

scattered wave is produced’
P{t) = (iaf) P, eir<t)F(ka) 2.2)




Fig.1 Geometrical illustration of problem . The incident pressure wave
is an infinitely extended plane wave for the steady state scattering and a
few cycles sine burst for the transient scattering. The scatterer can be
an elastic sphere or a spherical shell. The thickness of shellish=a - b.




Eq.(2.2) has the form of an outgoing spherical wave modified by the form function. For

convenience, we define two dimensionless variables as following:
x=ka=(wc)a
t=(ct-r)/a,or xt=k(ct-r). 2.3)

For the incident wave, r in above expression should be replaced by z. Obviously, T is a
dimensionless time interval, which is analogous to retarded time, with a unit
corresponding to the time period necessary for the wave to travel a distance equal to the
radius of the sphere or the out radius of the shell in the speed of sound in water.

Equation(2.2) can then be rewritten as

= (AP, e |
P{7) (Zr) P, e-** Fx) . 2.4
2.2 Form Function

The complex scattering amplitude or form function in the backscattering direction

has the exact partial wave series representation

=23 (-1P(2 Bix)
X)= n+1l

R ) ix Eo( )"( )D"(x), (2.5)
where the functions Bn(x) and Dn(x) are 3x3 or 5x5 determinants obtained by satisfying the

appropriate boundary conditions for elastic sphere%:10 fluid shell!l or elastic shelll2.

The computation of the form function requires the truncation of the infinite
summation in Eq. (2.4). The minimum number of terms (or the maximum number of terms

used in the calculation) nmax retained for sufficient convergence of F(x) exceeds x. The




following criterion discussed by S. Kargl and P.L.Marston will be used throughout this
work!13,
Nmax =2+ [x+4.0x13], =x<38
(2.6)

Nmax =3 +[x +4.05x13), x28

where the square brackets imply truncation to the nearest integer.




Chapter 3

Transient Analysis

3.1 Signal in Time and Frequency domain

For any incident time signal g(t), we can write down its frequency spectrum as

Fourier integral

Glo)= f ) g(t) e*iot de

- (3.1)
and
g(t)=—17[ G{o) eetdw
2 32)

We can also rewrite these expressions in terms of our dimensionless variables x and T as

G(x) = j ) g(t)ei** dt

3.3)
and
T = _L -ixt d
g( ) 21!}:“ G(X) © X (3.9
;\\




For each single frequency component G(x), we have for its scattering response in
frequency domain
P(x) = G(x) F(x) . (3.5)

The total far-field scattering wave in the time domain is hence given by

P = :
pr)=-2 L L G{x) Rx)e-ixt dx 56

Since only the backscattering is of interest in this report, F(x) in above equation is the form
function at specific angle 6 = .

3.2 Transient Formulation

If, in Eq. (3.6), one writes

plr)= oL f

) G{x) F{x)e-ixT dx

’

3.7

then by computing p'(t) as a function of 1, the scattered wave as a function of time

observed at point P will be obtained. In other word, a pulseform will be seen at the point P
developing like that computed according to Eq. 3.7 as value of T increases.

For a real incident wave we have g*(t) = g(t), therefore

G{-x)= f -g(t)e'i“dt




9
= f (g(‘t) ™ ar
oo L
= ( f glt)e™ dt)
=G'(x)
So we obtain
G(-x) = G*(x) (3.8)

Let the incident wave be a Dirac delta function 8(t), then G(x) = 1 and

ply)=2 f Fixle ™" dx
2z J

We see that p'(t) and F(x) are the impulse response and the transfer function of the
system (scatterer) respectively. They are a Fourier Transform pair. Since p'(t) is a real

function, following the above derivation, we immediately write down
F(-x) = F*(x) 3.9)

Now, we are ready to simplify our Eq.(3.7) as

plr)= 5L f G(x) Rx)e-ixt dx

0
=-L f G{x) Rxe-ixt axe 5L f G(x) Rx)e-ixT dx

0




10
= 5’; Jo G(-x) H-x)eixT dx+ 51;; ] . G{x) Ax)e-ixT dx
- 5’;;]: G(x) Ax)e-ixtdx | + 5% ]: G(x) Fx)e-ixt dx
- ZRe j "~ G{x) Fixerixt i (3.10)
T 0

Eq. (3.10) is the basic formula we will use throughout the work. By using Eq.(3.10), we
don't need to worry about the physical meaning of negative frequency. This equation has
turned out to be important in understanding the algorithm developed later by using Digital

Fourier Transform method.




Chapter 4

41U timit of the inteerati

sine tone burst
sin 0 ¢ 0222
)= {

otherwise
or,intermsof xand ©

{sinxo‘c OStstEE=B
o

0 otherwise

counterpart. Its spectrum can be calculated as follows,

’

11

Computational Consideration and tests

First, a Fortran program computing the frequency spectrum of an incident several

cycles sine burst was developed. It was checked by determining the backscattering from a
hypothetical body for which the form function F(x) = 1. Eq.(3.7) immediately leads that

P (1) is the inverse transform of the incident wave, therefore an exactly the same signal is

expected. However, since it is impractical to do the integration in Eq.(3.10) over the x

range of (0, +00), we truncated the upper limit of the integration at xmax. For a b-cycle

4.1

4.2)

where g is the carrying frequency of the burst and xg = koa = wga/c is its dimensionless




12
G(x) - I- dt) eixt dr
B
= I sin xgtTeixtdr
0
= %[& (1-¢iBa). é(l - ¢iBf) @.3)

where & = x+xg, P = x-xo. The integration in Eq.(3.10) was accomplished by utilizing
the simple trapezoidal method. To assure the detail of the scattered wave be properly

displayed, the interval between successive T values has to be chosen small enough. This
value has been set to At= f.’aB_E 50 that there are 25 points over one cycle of sine burst (see
more detail in Appendix A6). For the case of a 4-cycle burst with xg =49.1, At = 0.02

and xmax was chosen to be 400. This value of xmax is determined by the fact that the
inverse transformed version has been good enough for a cut-off frequency of 400 and the
convergence beyond 400 is so slow that in order to get significant improvement over the
case of xmax = 400, xmax has to be greater than 1000, which implies whole lot a more

computational work. The ideal incident tone burst and computed backscattering from an

object with F(x) = 1, or the real incident burst are both shown in Fig. 2.

Replacing the integral's upper limit with a finite value is the same as letting the
signal pass through an ideal low-pass filter. Therefore a filtered replica of the ideal incident
burst is expected. This effect is clearly shown by the actual incident burst depicted in Fig. 2
where the sharp part of the ideal burst has been rounded off since the high frequency
information above the xmax have been lost. But the amplitude of those high frequency

components are small enough that the difference is not significant as far as the transient

scattering is concemed. Physical aspects are still there and almost unaffected.




\

— (\

0.5

0.04

~0.54

-l.04 \}

-0.3 0.0 03 1.0
T

Fig2a. Ideal incident burst and its practical version. The 4-cycle sine burst has a
carrier frequency xg = 49.1. The cut-off frequency is xmax = 400. The real burst is
good enough, which shows that the xmax = 400 is sufficient.
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4.2 Test against experiment

The test against the experiment result obtained by William and Marston? for a
tungsten carbide sphere in water was then carried out. The material parameters used for
tungsten carbide were: density p= 13.80 g/cm3, longitudinal wave speed c;= 6.860 x10 3
cm/s, shear wave speed = 4.185 x 10 5 cm/s. Those for water were: density Pw= 1g/cm3.
longitudinal wave speed = 1.4760 * 10 5 cm/s. The incident burst is again chosen as stated
in Eq. 4.2 with b=4. The form function F(x), calculated on the Dec station in the range of
0<x<400 with an interval Ax = 0.05 and plotted on HP-7475A plotter, is shcwn as Fig.3b
for completeness. Both the experiment and calculated results are also shown in Fig. 3
where we have seen that they match each other reasonably well. The form function is
referenced at the center of the sphere so that scattered wave leads the incident wave by 1

= 2. This test simply verified that the approach to the transient problem is successful.

4.3 DFT Approach

To do the computation more effectively we utilize the FFT programs provided by
the CMS main frame. To better understand the algorithm we are using we have to talk
about the DFT (abbreviation for Digital Fourier Transform) first.

DFT 14 of a sequence of N samples, f(nT), 0<n<N-1, is defined as another
sequence

Fi)= ¥, faTeam
n=0 . (4.4)
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Material plgemd)  cGamis) s (k)
Tungsten carbide 13.80 6.860 4.185
Water 1.00 1.476

Table 1. Material parameters for tungsten carbide sphere and water.
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The inverse DFT is given by
fuT)=L 3 Hiq)ciami
i=0 . 4.5)
where 0Sn<$N-1,0Sj<N-1 and
Q= ﬁ,r& (4.6)

Clear enough, N has to be very large if we intent to have both frequency and time
intervals to be sufficiently small so that we don’t lost any detailed information during the

computations.

4.4 Sampling

Now we consider an input sequence Yj obtained by sampling the incident sine burst
at an equal interval At. Since DFT regards the input sequence as one period of a periodic
signal, we let Yj be described as

sin (xoBm/M) m=0,1........M-1
Yj= { C)
0 m= M, M+1,..N,
where M is the number of points over the duration of the burst while N is the length of the
input sequence. A look at the measurements of backscattering by elastic sphere and shells
tells us that the ratio of N/M must be greater than 16 if we want to distinguish at least the
first few scattered surface waves. By letting the ratio big enough, we can assure the period
of the input sequence to be long enough to cover the transient time interval we are interested

in. Otherwise, the second period of the specular reflection would get back to our
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measurement point P before the SEW due to the first burst. This is the intrinsic
disadvantage of the method over the previous one where we only have one period of burst.
This turns out not to be a problem because in order to satisfy other conditions to be
discussed below, N has to be very large compared with M, which ensures the above

condition in any case.

Sampling period At has to be chosen so that there are sufficient sampling points
over one cycle of the burst. And at the same time we need to be sure that the frequency
interval Ax is small enough. But calculating of the form function involves a lot of
computing time, Ax is therefore set to be 0.05 which has been proven sufficient by the
later computational results. Actually one can not ordinarily discern the results of Ax = 0.05

and Ax = 0.01 . Suppose we want L points per cycle, then,

M=LxXxb 4.8)
At = LZ% (4.9)
and
N=—28 _LX
AtAx  Ax (4.10)

for L = 20 and xp=49.1, N=19,640. The maximum xg value involved in this work is
about 340 and resulting huge number of N can be a computing problem. To avoid this we

will have to decrease the value of L and increase the value of Ax sometimes ( see more

detail in the Appendix A6 ).




4.5 FFT_Algorithm

FFT programs we used are FFTCF and FFTCB routines in the IMSL bank!$,
FFTCF routine computes the discrete complex Fourier Transform of a complex vector of
size N while FFTCB computes the inverse discrete transform of a complex vector of size
N. The method used is a variant of the Cooley- Tukey algorithm which is most effective
when N is a product of small prime factors. Specifically, given an N-vector Y, FFTCF

returns another N-vector Z

N-1 :
Zi= Y, Ypc2minN, j=0,1,..N-1 @.11)

n=0

and given an N-vector Z, FFTCB returns another N-vector Y

N-1
Yn= -I“II-J;O ZjC’sz’N. n=0,1,. N-1 4.12)

For a real sequence Yn* = Yp,, we have

N-1

n=0

N-1
= Z Y, e2xin g-2%iny/N
n=0

N-1
= Z (Yn eZninle)'

n=0

or,
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ZN.=Z (4.13)

Above equation is analogous to Eq.(3.8). Clearly, Z;j ( j>[N/2]) corresponds to the negative
frequency components and Zyp, is the highest frequency component calculated by the FFT.

Therefore we can also write

(Nr2)
Ya=2Rq3k 26 Z; ¢-2niniN n=0,1,..,N-1 (4.14)
= .

Eq.(3.10) becomes

, (Nr]
Pa=2Rdl ¥ ZF e'z"i"im) n=0,1,..N-1 (4.15)

N fr)

The problem of reference point can be serious for the FFT calculation. If we still let
the incident burst be described by Eq.(4.7), we would expect the backscattering echoes
leading the incident burst by T = 2. In other word, backscattering would start at ¢ = -2. But
FFT routines do not provide any data in the negative time scale. In fact, since the incident
burst is regarded as one period of a periodic input sequence, the echo starting at T = -2
would appear at the end of the first period of computed backscattering. Basically, there are
two ways to solve the problem. One way is to multiply each frequency component of
incident burst by a phase shift factor exp(i2ka) before doing the integration or summation.
This is equivalent to taking the convolution of the incident burst with 3(t—2). But this &
function could not be perfect due to the upper limit of integration or summation. This will
cause some distortion on the real incident burst. The other way is to directly shift the

incident burst over the time scale so that is starts at © = 2 instead of T = 0. This is in

&
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principle the same as the first method but avoids the other unwanted effect. In order w0 see
the early stage of the backscattering clearly, we have actually shifted the incident burst so
that it starts at T = 3. The backscattering echoes therefore starts at t = 1 in any case. The
ideal and real (inverse transformed assuming a hypothetical body with F(x) = 1) incident
bursts for FFT routines are shown in Fig.4a. The spectrum of the burst was computed by
FFTCF routine and the backscattered wave was computed by FFTCB routine according to
Eq.(4.15) where we have let Zj = 0 for j = [n/2]+1, ... N-1. As we see from Fig.4b, The
backscattered wave calculated by using the OFT is exactly the same as our previous

computed result by doing the integration directly (Fig.3).




|

0.0

AR

Ls
23 3.0 3.5 4.0
T

Fig.da. Ideal incident burst and its practical version for FFT algorithm. They start
at T = 3 instead of 0. The xmax is again chosen to be 400.
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Chapter §

Backscattering From Elastic Shells

5.1 Yerification with Experiments

The same FFT algorithm was applied to the case of a 16.2% - thick spherical shell.
The material constants are listed in Table 2. The results for ka = 68.8, 64.7, 36.4 are
presented in Fig. 5. Incident burst was again chosen to be four-cycle sine wave. These
results reasonably match the previous experiment result obtained by S. Kargl and P.L.
Marston!2 which is also shown in Fig.5 for comparison. Evidently, there are some
significant difference. In the computation case a slow varying wave packet shows up,
which was not expected and understood at the very beginning of the report at all. But we
can get some clue by looking at the form function of such a shell which is also given in
Fig.5. Clearly there is a big hump at the very low frequency. This phenomenon explains, at
least tentatively, why the low frequency components of the incident wave were sort of
amplified and the effect was so evident. The central dimensionless wavenumber of the
hump is around x = 5. For the a = 1.905cm shell, it corresponds a low frequency of fp =
62kHz which is much lower than the actual carrier frequency of the incident burst. This
enhancement of the low frequency response may have been suppressed during the
experiments since the combined transmitting and receiving apparatus would not have had
the broad bandwidth assumed in the calculation. It is especially plausible that the four-cycle
source burst used in the experiments did not have the low frequency spectral components
implicit in Eq.(4.3). For thinner shells, the enhancement is shifted to a higher frequency

and becomes what is known as the mid-frequency enhancement of the backscattering.




Material plgemd)  c(kmis) ¢ (ki)
440 C stainless stell  7.84 5.854 3.150
Water 1.00 1.479

Table 2. Material parameters for SS440C shell and water.
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FORM FUNCTION FOR SPHERICAL SHELL
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Fig.5b. The form function of a 16.2%-thick SS440C shell.

s




FORM FUNCTION FOR SPHERICAL SHELL

KA

FORM FUNCTION FOR SPHERICAL SHELL

IFI VS. KA

Fig.5b. The form function of a 16.2%-thick SS440C shell (continued).
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5.2 More on Mid-frequency Enhancement

The unexpected phenomenon and the tentative yet reasonable explanation lead us to
the further examination of some other shell cases. Because the hump effect will most likely
happen for thin shells, the backscattering of a 4-cycle sine burst incident on a 5% - thick
spherical shell was computed. The carrier frequency xo = 66.3 was chosen, which happens
to be a form function minimum. Shown in Fig.6 are the form function, spectrum of the
incident burst and the transient backscattering. This time we see a huge hump or "hill" in
the range of ka values 18-24 in Fig.6a and a relatively large amplitude of components in
this range for the incident burst in Fig.6b. These combined factors clearly explain the low
frequency signal detected in Fig.6c. There is a relatively large response to the initial weak
low frequency component of the incident burst.

In the system point of view, the shell is acting like a filter with a big response for
ka = 18-24. Any significant frequency component in this range for any input signai will be
singled out. Then what about a burst with a carrier frequency in that range? The question
is well answered by the huge echo following the specular reflection as shown in Fig.6d for
a 4-cycle sine burst with xg = 22.1. This particular value of xg was picked up because in
Fig.6c we see the low frequency response looks like a sine wave of 1/3 of original sine
signal carrier frequency. The existence of a mid-frequency enhancement or “hill" in the
form function for the steady state backscattering of elastic shells has been noted by various
authors including Talmant, Uberall, Miller, and Dickey3 and Sammeimann, Trivert, and

Hackman16:17, The effect is interesting enough that it deserves further investigation.
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5.3 Mid-frequency Enhancement: Ray model and Verification

First of all, we notice the arrival time of the echo. Relative to the specular response,
this particular echo always has a time delay of 74 = 4-5, that is the time period necessary for
the signal to travel a distant equal to the 4 or 5 times of out radius of the shell in terms of
the speed of sound in water. To facilitate the understanding of the major scattering
mechanisms, the ray mode! analysis borrowed from Marston ,Kargl and Williams!1.18.20
is simply restated here. Fig.7a shows the ray diagram for leaky Lamb waves where a trace-

velocity matching condition gives forc; > ¢
6; = arcsin (c/c)) . (5.1a)

Ray synthesis of form function has basically two parts, one is due to the specular
reflection and the other is the contribution of the variety of SEW. It can be written in the

following form where / denoted the class of SEW:
f= fsp + fl:so + f[:ao +fl=ao' + .., (S.Ib)

where fi=ay' term is thought to be especially important for thin shells. Some authors16.17
use A; to denote the wave ag'. The geometric series for repeated leaky wave contributions
gives for the steady state scattering froma spherical shell!3.19

fi= -Grexpl-2{x - @) Bi] exptin)
1 + expl-2npy) expli2nkac/c)) » (5.2)

where

"= 2ka[(c/cy) (x - 8)) - cosO;] - n/2
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A”

Dl

Dl'

evanescent wave

Fig.7a. Ray diagram for contributions to backscattering due to various kinds of
surface wave ( of type /) excited on an elastic spherical shell. Ray path ABECD is
the usual case where ¢; > c. Ray path A'BE CD' and AA"B"E C"D" correspond
to ¢ = ¢ (known as "creeping wave") and c; < ¢ (known as "trapped wave"). In the
case of cgi < 0, The energy follows the short path of ABCD without
circumnavigating the shell.
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s Vo W2

Fig.7b. The ray diagram for the specular reflection from an elastic spherical shell.
The point S is the vertex of the refracting surface. The ray AB infinitesimally close
to the z-axis is incident on the shell with impact parameter s. The ray ABC is the
ordinary specular ray: while ABDEF and ABDEGHI are the first two internal
specular reflection contributions. Intersection of the projection (dashed lines) of the
outgoing rays and the z-axis define locations of virtual point sources, Vp, which
describe local curvature of the wavefront associated with each ray. The specular
reflection contribution to the form function for backscattering is determined from a
superposition of the wavefields from the virtual sources,
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and18-20
IGl = 8%fBic/cr . (5.3)

Some comments on the nature of the specular reflection are appropriate. Fig.7b
shows the ray diagram for the external specular reflection and the other specular
contributions associated with the reverberation of longitudinal waves within the shell. The
point S is the vertex of the refracting surface. The ray AB is infinitesimally close to the z-
axis. The ray ABC is the external specular ray; while ABDEF and ABDEGHI are the first
two internal specular reflection contributions. At the internal surface, the rays are totally
reflected and the rays are partially reflected and/or transmitted at the water-shell interface.
Intersection of the projection (dashed lines) of the outgoing rays and the z-axis define
locations of virtual point sources, Vp, which describe local curvature of the wavefront
associated with each ray. For thin shells numerical computations of steady-state
scattering!9 suggest that it is satisfactory to neglect the multiple reverberations in the region
of the mid-frequency enhancement and to approximate the specular contribution is that due
to ray ABC.

Fig.8,9,10 calculated by Dr. Sun for a 2.5%-thick SS304 shell show how the
radiation damping parameter J; (in np/radian), the phase velocity ¢; and the group velocity
cg of ap,sp and ag’ waves vary with ka. For the thickness of the shell we are considering
here these are the only relevant surface guided waves. The method of computing these
surface wave properties is based on applying the Watson transform methodology to the
exact elastic equations for shells as discussed in Refs. 12,13,and 20. In Fig.8, we see that
in the region of 34<x<62, P;is near zero for ag and is large for so wave. Eq.(5.2) and

(5.3) tell uS that the contribution to the form function due to a surface wave will be small if
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By value of the surface wave is either small (coupling coefficient G; will be small) or large
(big damping will kill it), hence only the ag’ wave is important in this analysis. Fig.9 tells
us that the phase velocity for ag' in the ka range we are dealing with is very close to the
sound speed in water ¢, which means that we are near the coincident condition. Eq.(5.1b)
immediately gives 6; = %/2 for ¢; = c. In Fig.7a, a traveling path of the wave is drawn as
ABE CD'. The wave first travels with speed of c straight along the ray A'B' anci
couples with the surface of the shell in the vicinity of point B', then goes with speed of cg
along a ray path BE C' that lies along the periphery of the shell. Finally travels to D' with
speed ¢ straight along the path C'D'. This is the case of "creeping wave". For ¢;j< ¢, a
"trapped wave" exist where the wave is tunnelling into the shell in the form of an
evanescent wave as indicated by the rays A"B"E C"D" in Fig.7a. The terminology is that of
Ho and Felsen21, For both cases, the incident angle is taken to be /2. The applicability of
Eq.(5.1b) to steady state scattering from thin shells was recently demonstrated by Sun and
Marston!9. Inspection of Fig.9 shows that ¢; < ¢ for the ag' wave which exhibits "trapped"

wave behavior at low frequencies becoming "creeping wave" like as ka is increased above
=~ 40,

Consider now the implication of Fig.7a to the scattering of tone bursts. The arrival
time of the burst follows from the inspecticn of Fig.7a. Since 8; = n/2 for creeping and
trapped waves the time delay of ag' wave 14 relative to the specular reflection in terms of

the dimensionless time interval can be approximated as

=(1+mc/cgr+ 1), (5.4)

where the actual time delay is tq = tqa/c. Fig.10 states that the group velocity for ag' is
close to and a little bit bigger than c. In the region of 34<x<62, cgy/c = 1.38-1.03, which

corresponds to a Tg value of 4.28 - 5.05. The property of c; and cgy for ap’ wave was
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found to be common to other thin shells and hence the above analysis should also apply to
the general arrival time of the ag' wave burst for the 5%-thick SS440c shell. We see that

this simple approximation agrees with our previous observation in Fig.6.

To further test the validity of this ray model and investigate the backscattering under
the mid-frequency enhancement condition, we have made the computations for the
backscattering of bursts with various carrier frequencies. Since the available ray method
calculation by Sun is for the case of a 2.5% - thick SS304 shell, the same parameters were
chosen and listed in table 3. The carrier frequencies picked up were ka =34, 38, 42, 46,
50, 54, 58, 62. In order to measure the correct amplitude for the transient waves the
incident burst has to be long enough so that the near steady state response can be achieved
before the signal turns off. On the other hand, it could not be too long, otherwise
additional echoes would come in and make the measurement impossible. The establishment
of the steady state response has turned out to be slow; as a compromise, a 20-cycle burst
was finally chosen. The calculated transient backscattering are depicted in Fig.11. For each
case, the amplitude of this particular type of wave relative to the specular echo were
measured by looking at the data presented in Table 4 and averaging the closest four
maximum values highlighted by the rectangular boxes. Table 5 provides the predicted
amplitude value by the ray model and that of present calculation for each ka value we
picked up. The amplitude measured from the transient backscattering is depicted by the
stars in Fig.12 where the ray model calculation has been drawn as a solid line in the same

figure for comparison. The ray model calculation was based on the following equation

[ fetumeol = 8781 expl-n) (5.5)

where m = 0 indicates that the contribution is only due to the first radiation after

circumnavigating half the circle which is suitable to compare with the transient
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Material p(geemd)  cy(kmys)  cg (kmys)
SS304 7.570 5.675 3.141
Water 1.00 1.479

Table 3. Material parameters for stainless steel 304 shell and water.
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T P T P
6.596870 0.036035 6.606110 0.111537
6.615349 0.159312 6.624588 0.209079
6.633827 0.235192 6.643066 0.232162
6.652306 0.223170 6.661545 0.178535
6.670784 0.126900 6.680023 0.062583
6.689262  -0.012010 6.698502 -0.075965
6.707741  -0.142101 6.716980 -0.184319
6.726219  -0.216449 6.735458  -0.222948
6.744698  -0.208140 6.753937 -0.178558
6.763176  -0.123631 6.772415 -0.068047
6.781654 0.002376 6.790894 0.064782
6.800133 0.122427 6.809372 0.166800
6.818611 0.191209 6.82785 0.198699
6.837090 C.181139 6.846329 0.148974
6.855568 0.095020 6.864807 0.036073
6.874046 -0.034133 6.883286 ~-0.098084
6.892525 -0.15711¢ 6.901764  -0.202599
6.911003  -0.227852 [6.920242 _ -0.237273)
6.929482  -0.219966 6.938721 -0.188992
6.947960 -0.136223 6.957199 =0.076677
6.966438 -0.007875 6.975677 0.056634
6.984917 0.116522 6.994156 0.160240
7.003395 0.189328  [7.012634 0.194753)
7.021873 0.182232 7.031113 0.147074
7.040352 0.097537 7.049591 0.035587
7.058830  -0.032350 7.068069 -0.096843
7.077309  -0.157209 7.086548  -0.199349
7.095787  -0.228534  [7.105026 _ -0.232539
7.114265 -0.218630 7.123505 -0.183318
7.132744  -0.131329 7.141983  -0.069772
7.151222  -0.000209 7.160461 0.065476
7.169701 0.124636 7.178940 0.171080
7.188179 0.195974 7.197418 0.206602
7.206657 0.187360 7.215897 0.158368
7.225136 0.102800 7.234375 0.044973
7.243614  -0.025200 7.252853  -0.089960
7.262093  -0.148125 7.271332  -0.194823
7.280571  -0.219536 7.289810  -0.229761
7.299049  -0.212095 7.308289  -0.181532
7.317528  -0.127805 7.326767 -0.068328

Table 4.1 Data for backscattered wave under coincident condition with xg = 34.0.




T
6.365273
6.381806
6.398339
6.414872
6.431405
6.447938
6.464471
6.481004
6.497537
6.514070
6.530602
6.547135
6.563668
6.580201
6.596734
6.613267
6.629800
6.646333
6.662866
6.679399
6.695931
6.712464
6.728997
6.745530
6.762063
6.778596
6.795129
6.811662
6.828195

6.844728
6.861260
6.877793
6.894326
6.910859
6.927392
6.943925
6.960458
6.976991
6.993524
7.010056
7.026589
7.043122
7.059655

P
-0.023188
-0.439772
-0.706256
-0.700890
~0.446606
~0.021616

0.399340
0.670664
0.672829
0.416703
-0.011839
~0.438064
-0.707348
-0.713637
-0.455063
-0.034457
0.393084
0.658783
0.665960
0.410796
-0.012120
-0.437461
-0.705638
-0.713730
-0.457097
~0.036101
0.390068
0.659242
0.667313
0.413183
-0.005725
-0.431122
-0.699590
-0.707751
-0.453401
-0.033302
0.393116
0.662974
0.672867
0.419696
0.002894
-0.426468
-0.694408

T P
6.373540 ~-0.238160
6.390073 -0.597940
6.406606 ~0.741619
6.423139 -0.604760
6.439672 -0.246643
6.456204 0.203273
6.472737 0.564193
6.489270 0.705618
6.505803 0.571213
6.522336 0.212836
6.538869  -0.232127
6.555402  -0.600266
6.571935 __ -0.743429]
6.588468  -0.615201
6.605000 -0.257137
6.621533 0.188746
6.638066 0.553324
[6.654599 0.699054]
6.671132 0.565667
6.687665 0.209122
6.704198 -0.236750
6.720731 _ =-0.602479
[6.737264 _ -0.745843)
6.753797  =0.614909
6.770329  -0.258647
6.786862 0.187598
6.803395 0.551739
l6.819928 0.697035]
6.836461 0.568729
6.852994 0.214244
6.869527 =0.229921
6.886060 =-0.593886
6.902593  =0.740077
6.919126 -0.611882
6.935658 -0.257104
6.952191 0.188291
6.968724 0.554449
6.985257 0.702523
7.001790 0.577343
7.018323 0.222881
7.034856  -0.220533
7.051389  -0.587425
7.067922  =0.734579
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Table 4.2 Data for backscattered wave under coincident condition with xo = 38.0.




T

T P P
6.3%50278 0.55923¢ 6.357758 1.161832
6.365237 1.646473 6.372717 1.967741
6.380197 2.097844 6.387676 2.019434
6.395156 1.732595 6.402636 1.27%5286
6.410115 0.689955 6.417595% 0.042314
6.425075 -0.617974 6.432554 -1.220983
6.440034 =1.70833¢ 6.447514 -2.024584
6.454993  =2.14501: 6.462473 =2.060061
6.469953 ~=1.77778¢ 6.477432 -1.320424
6.484912 -0.730696 6.492392 -0.079298
6.499871 0.582484 6.507351 1.179777
6.514831 1.670031 6.522310 1.985994
6.529790 2.108430 6.537270 2.020617
6.544749 1.737244 6.552229 1.280616
§.559709 0.691401 6.567188 0.039001
6.574668 -0.622499 6.582148 ~-1.221521
6.589627 ~=1.709781 6.597107 =-2.025415
6.604587 =2.147242 6.612066 =-2.060807
6.619546 =-1.774627 6.627026 -1.316886
6.634505 =0.727802 6.641985 =0.075336
6.649465 0.585943 6.656944 1.189285
6.664424 1.671964 6.671904 1.991014
|§ 679383 2.109529] 6.686863 2.026320

.694343 1.737120 6.701822 1.275133
5 709302 0.690124 6.716782 0.034059
6.724261 ~-0.627559 6.731741  -1.234824
6.739221  -1.717731 6.746700 -2.035459
[6.754180 -2.158458 6.761660 =2.069981
6.769139  -1.78529% 6.776619 =1.325667
6.784099 =0.735967 6.791578 =0.078363
6.799058 0.587846 6.806538 1.188315
6.814017 1.675397 6.821497 1.995219
l[e.828977 2.116850 6.836456 2.034254
6.843936 1.746574 6.851416 1.286531
6.858895 0.699010 6.866375 0.039062
6.873855 ~-0.623633 6.881334 =1.229516
6.888814  -1.714690 6.896294 -2.033982
6.903773 _ -2.160228 6.911253 =2.072351
6.918733 -1.788444 6.926212 =-1.330139
6.933692 -0.741370 6.941172 -0.084951
6.948651 0.580860 6.956131 1.187328
6.963611 1.674013 6.971090 1.997989
6.978570 2.120455 6.986050 2.036927
6.993529 1.750979 7.001009 1.290996

Table 4.3 Data for backscattered wave under coincident condition with xg = 42.0.



T

6.597102
6.610761
6.624419
6.638078
6.651736
6.665395
6.679053
6.692712
6.706370
6.720029
6.733687
6.747346
6.761004
6.774663
6.788321
6.801980
6.815639
6.829297
6.842956
6.856614
6.870273
6.883931
6.897590
6.911248
.924907
.938565
.952224
.965882
.979541
.993199
.006858
.020516
.034175
7.047833
7.061492
7.075150
7.088809
7.102468
7.116126
7.129785

NNNOANNOROD

Table 4.4 Data for backscattered wave under coincident condition with xg = 46.0.
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P

-0,025907
-1.825780
-2.936231
~2.929365
-1.812736
-0.012516
1.785619
2.897599
2.893751
1.773091
=0.031260
-1.832103
~2.942909
-2.939170
-1.819549
-0.016426
1.786369
2.899034
2.897290
1.779217
-0.024116
~1.826900
-2.941862
~2.938947
-1.823455
-0.020529
1.783107
2.898016
2.896656
1.782508
-0.018170
-1.820955
-2.933331
-2.930409
~1.816685
-0.013899
1.790331
2.904951
2.907706
1.799615

T P
6.603931 -0.973626
6.617590 -2.503560
6.631248 -3.079511
6.644907 -2.493511
6.658566 ~0.959201
6.672224 0.933062
6.685883 2.464755
6.699541 3.043399
6.713200 2.455397
6.726858 0.918041
6.740517 -0.978651
6.754175  -2.510407
l6. 767834 _ -3.08966))
6.781492 -2.501066
6.795151 -0.964964
6.808809 0.932137
6.822468 2.464557
[6.836126 3.047814]
6.849785 2.459860
6.863443 0.924893
6.877102 -0.973685
6.890760  -2.505418
6.904419  -3.089979]
6.918077 -2.503733
6.931736 -0.967920
6.945395 0.928623
6.959053 2.461402
[6.972712 3.047017]
6.986370 2.462214
7.000029 0.927581
7.013687 -0.966861
7.027346  -2.497132
7.041004  -3.032415
7.054663 -2.495530
7.068321 -0.9603890
7.081980 0.934126
7.095638 2.468091
7.109297 3.057021
7.122955 2.474592
7.136614 0.947236
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T P T P
6.504855 0.011539 6.509044 -0.436678
6.513232 ~-0.867708 6.517421 -1.262138
6.521609 -1.602292 6.525798 -1.873637
6.529986 ~2.064192 6.534175 -2.164548
6.538363 -2.169625 6.542552 -2.080113
6.546741 ~1.901734 6.550929 -1.643118
6.555118 «1.314392 6.559306 -0.927864
6.563495 ~0.499779 6.567683 -0.050313
6.571872 0.399248 6.576060 0.829382
6.580249 1.222500 6.584437 1.561802
6.588626 1.831941 6.592814 2.021164
6.597003 2.121951 .129898}
6.605380 2.043390 6.609569 1.865207
6.613757 1.603903 6.617946 1.272740
6.622134 0.886852 6.626323 0.461651
6.630511 0.013940 6.634700 -0.436558
6.638888 -0.868439 6.643077 -1.262070
6.647265 -1.601197 6.651454 -1.871750
6.655643 -2.061283 6.659831 ~-2.161029

4020 -2.167546] 6.668208 -2.081394
6.672397 -1.905348 6.676585 ~1.645490
6.680774 -1.313410 6.684962 -0.925579
6.689151 -0.500037 6.693339 -0.054200
6.697528 0.394307 6.701716 0.826047
6.705905 1.220548 6.710093 1.559359
6.714282 1.828331 6.718471 2.017086
6.722659 2.117488 [6.726848 2.124104]
6.731036 2.036243 6.735225 1.858479
6.739413 1.598993 6.743602 1.268452
6.747790 0.880678 6.751979 0.453133
6.756167 0.005424 6.760356 -0.442877
6.764544 -0.873113 6.768733 -1,267176
6.772922 -1.607440 6.777110 -1.877936
6.781299 -2.066348 6.785487 -2.165199

676 -2.171248| 6.793864 -2.084203
6.798053 ~-1.906754 6.802241 -1.645953
6.806430 -1.313712 6.810518 -0.925399
6.814807 -0.498067 6.818995 -0.049818
6.823184 0.400200 6.827373 0.832200

Table 4.5 Data for backscattered wave under coincident condition with xo = 50.0.



T P
6.382811 0.035442
6.390566 0.372359
6.398321 0.641011
6.406076 0.798002
6.413832 0.817231
6.421587 0.686021
6.429342 0.428413
6.437098 0.097275
6.444853 -0.251158
6.452608 -0.560668
6.460363 -0.780417
i 9 -0.868711
6.475874 -0.802352
6.483629 -0.603766
6.491385 -0.307072
6.499140 0.041802
6.506895 0.381673
6.514650 0.654073
6.522406 0.805060
6.530161 0.814186
6.537916 0.684721
6.545671 0.429062
6.553427 0.094795
6.561182 -0.258108
6.568937 -0.568257
6.576693 -0.784984

-0.872268
6.592203 -0.808948
6.599958 -0.608078
6.607714 -0.309112
6.615469 0.041721
6.623224 0.383811
6.630980 0.655401
6.638735 0.809840
6.646490 0.821553
6.654245 0.690296
6.662001 0.435166
6.669756 " 0.100009
6.677511 -0.250588
6.685266 -0.563140
6.693022 -0.782125
6.700777 -0.864707
6.708532 -0.801931
6.716288 -0.601830
6,724043 -0.298634

Table 4.6 Data for backscattered wave under coincident condition with xg = 54.0.

T P
6.386688 0.209292
6.394444 0.518352
6.402199 0.735356
6.409954 0.826164
6.417709 0.769973
6.425465 0.569997
6.433220 0.268459
6.440975 -0.078245
6.448730 -0.414271
6.456486 -0.684435
6.464241 -0.843409
6.471996 -0.854340
6.479752 -0.717329
6.487507 -0.465459
6.495262 -0.135321
6.503017 0.216520
6.510773 0.530038
6.518528 0.747090

.526283 0.827153
6.534039 0.766641
6.541794 0.570449
6.549549 0.267968
6.557304 -0.083125
6.565060 -0.422186
6.572815 ~0.690728
6.580570 -0.846725
6.588326 -0.859543
6.596081 =-0.723501
6.603836 -0.468155
6.611591 -0.135769
6.619347 0.21£022
6.627102 0.531717
6.634857 0.749476,
le.642612 0.834087|
6.650368 0.773008
6.658123 0.576243
6.665878 0.273601
6.673634 =0.077046
6.681389 -0.414793
6.689144 -0.687918
6.696899 -0.841541
6.704655 -0.851418
6.712410 -0.717605
6.720165 ~-0.460004
6.727921 -0.124493
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T P
6.074376 -0.004603
6.083041 -0.138927
6.091706 -0.247784
6.100371 -0.297811
6.109036 -0.281832
6.117702 -0.197849
6.126367 -0.070412
6.135032 0.071267
6.143697 0.192945
6.152362 0.261705
6.161027 0.266137
6.169692 0.199254
6.178357 0.083878
6.187022 -0,056422
6.195687 -0.184968
6.204352  -0.271104

17 -0.294801
6.221683 -0.245890
6.230348  -0.138985
6.239013 0.004546
6.247678 0.140881
6.256343 0.237589
|6.265008 0.262724]
6.273673 0.217343

0.115705

6.282338

T P
6.078709 ~0.073365
6.087374 ~0.198649
6.096039  -0.281372
6.104704 __ ~0.298039]
6.113369 ~0.247893
6.122034 ~0.137058
6.130699  ~0.000069
6.139364 0.137669

435
|6.156694 0.273110}
6.165359 0.240549
6.174025 0.146085
6.182690 0.015065
6.191355 -0,124831
6.200020 -0.234247
6.208685 -0.292394
6.217350 -0.278369
6.226015 =0.199158
6.234680 -0.068894
6.243345 0.075609
6.252010 0.196614
6.260675 0.259815
6.269341 0.247984
6.278006 0.172367
6.286671 0.051692

Table 4.7 Data for backscattered wave under coincident condition with xg = 58.0.
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T P
5.962266 =-0.015721
5.970372 -0.077883
5.978478  -0.122413
5.986585 =0.143257
5.994691 -0.139266
6.002797 =-0.106693
6.010903 =-0.060525
6.019010 =-0.003971
6.027116 0.045946
6.035222 0.080809

43328 0.093645]
6.051435 0.079337
6.059541 0.045096
6.067647 =-0.005789
6.075753 -0.057588
6.083859 -0.100811
6.091966 =~0.125670
6.100072 -0.122697
6.108178 =0.098435
6.116284 =-0.051724
6.124391 0.001606
6.132497 0.050305
[£.140603 0085678

., 148709 0.093451)
6.156816 0.078462
6.164922 0.039610

T P
5.966319 =0.047572
5.974425 =-0.103375
5.982532  -0.135460
[5.990638 __ -0.145075]
5.998744 =~0.125686
6.006850 =-0.084866
6.014956 =0.033032
6.023063 0.023066
6.031169 0.065132
6.039275 0.090985
6.047381 0.089184
6.055488 0.064762
6.063594 0.020878
6.071700 -0.032454
6.079806 =0.080598
6.087913  -0.11655¢
[6.096019 __-0.127319,
6.104125 =~0.113186
$.112231 -0.077523
6.120337 -0.024494
6.128444 0.026482
6.136550 0.071073
6.144656 0.092797
6.152762 0.088778
6.160869 0.061804
6.168975 0.014311

Table 4.8 Data for backscattered wave under coincident condition with xg = 62.0.




x Amplitude by Amplitude by Amplitude by
ray model modified ray model PWS
34.0 0.169133 0.140835 0.2158
38.0 0.768413 0.667904 0.7213
42.0 2.132889 1.919801 2.1363
46.0 3.167944 2.930751 3.0686
50.0 2.394250 2.260151 2.1482
54.0 1.088952 1.041594 0.8506
58.0 0.433748 0.418051 0.2822
62.0 0.195738 0.189482 0.1149

Table 5. The amplitudes of ag' wave for SS304 shell by ray methods and PWS calculation.
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Fig.12a. Comparison of the amplitude for the ray model and PWS calculation. The solid
curve is for the ray model calculation which is based on the Eq.(5.5); while the dots are for
the PWS computation.
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Fig.12b. Comparison of the amplitude for the ray model and PWS$ calculation. The solid
curve is for the ray model calculation which is based on a modification to Eq.(5.5) in
which c/c; is omitted; while the dots are for the PWS computation. Comparison of Fig.12a
and 12b shows that the exact ray model is somewhere between these two.
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computations. The large second echo visible in Fig.11d is seen to be the contribution from
the ag' ray which has circumnavigated only the backside of the shell. Excellent agreement
of the resulis in terms of this simple calculation is a manifestation of the validity of the ray
model. Of course, sg can still be seen especially in the case of short bursts where we have

more low frequency components as presented in the appendix A. In addition, the overlap of
weak ag wave on ag' can also be seen at high frequercies.

5.4 Reverherations of longitudinal wave: nd_ resonance scaftering--fluid
shells

Next, we turn our attention to the resonance backscattering of shells. Consider the

longitudinal resonance conditions!1.20
k;h=nn (n=12,.) (5.6)

kh=(n+12)r (n=01.) , 5.7

where h is the thickness of the shell. These conditions are obtained from the requirement of
constructive interference of consecutive intenally reflected waves upon transmission back
into the water. These reflections are shown in Fig.7b. Eq.(5.6) corresponds to the usual
case considered here where the acoustic impedance of the elasuc material p,c;is greater than
the impedance of the water pc while Eq.(5.7) is valid for the case where p,c; is less than
pc. First assume an ideal fluid shell whose physical constants are the same as the real
aluminum shell (to be called aluminum/fluid shell) and are listed in Table 6b. By
investigating such an ideal object, we are able to get rid of the effects due to elastic surface

waves and transverse waves and concentrate on the longitudinal resonance echoes. The




Materizd p(g/em3d) i (km/s) cs (km/s)
Aluminum 2.70 6.42 3.04
Water 1.00 1.4825

Table 6a. Material parameters for Aluminum shell and water.

Fluid/water Pe (gfemd) ¢ (kmys) ¢ (kmy/s) p (g/cm3)
Aluminum/water 2.70 6.42 1.4825 1.00
S§440C/water 7.84 5.854 1.479 1.00

s e s st s st

Table 6b. Material parameters for fluid shells.
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form functions of a 4%-thick aluminum/fluid shell is shown in Fig.13 for c; = 6.42 km/s
where the form function for a real aluminum shell is also plotted for comparison. Eq.(5.6)

predicts a longitudinal resonance at xpr ~ 340. The minimum in both cases is a
manifestation of this longitudinal resonance. This dip has been modeled in detail by a ray
method!!. The cause of the large peak near x = 302 for the real aluminum shell has not
been well understood yet. It has been explained as the prompt radiation in Ref.20 and
described as a "thickness quasiresonance” in Ref.17. The form function for a 16.2%-thick
85440c/fluid shell is shown in Fig.14. This time Eq.(5.6) predicts a longitudinal resonance
at xpr=~ 76.8. Again a dip near x = 76.8 in Fig.14 corresponds to the presence of the
longitudinal resonance. The computed backscattered waves for the aluminum/fluid shell at
xo = 302 and 340 are both shown in Fig.15. Various burst lengths have been tested.
Presented in Fig.15a and 15b are the case of 20-cycle burst. For reference, some
additional figures are presented in the Appendix B. The results are just expected. For xg =
340, the decay of the echoes immediately following the specular reflection is the
manifestation of a longitudinal resonance. The form function predicts 2 minimum amplitude
of 0.17, as incident burst gets longer, the backscattered echo does reach the limit as shown
in Fig.15¢c where a 40-cycle burst has been used. The measured amplitude is 0.17 which
agree with the form function prediction and the region of measurement has been marked.
We don't see anything anomalous from the xq = 302 plot, which demonstrates that the
anomaly around x = 302 in the elastic form function is not the direct effect of the
longitudinal rezonance. We then computed the backscattering for the SS440c/fluid shell for
xo = 71 and 76.8. The reason we are interested in the case of xg = 71 will becorms clear
later in Section 5.5. The results are Fig.16 and again are fully expected. The decay of the
echoes corresponds to the longitudinal resonance which is not responsible for any possible

anomalous behavior around x = 71. As in the case of Aluminum/fluid shell, we checked the
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FORM FUNCTION FOR SPHERICAL SHELL

1.59

(@)

0.01

I¥]
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T Ll
s 300 323 350 378 400

Fig.13. Form functions of * 4%-thick aluminum/fluid{a) and aluminum(b) shells.
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minimum amplitude which is predicted by the form function to be 0.63. The near steady
state amplitude measured frora Fig.16b is 0.64 which is very close to the form function
prediction.

5.5 Reverberati { longitudinal I (tering--elastiz
shells

Next we investigate the on resonance and below resonance backscattering for a real
aluminum shell. Results for a 20-cycle incident burst for xg = 302 and 340 are depicted
in Fig.17. The buildup and decay at the very early stage of the backscattered wave under
the constructive and destructive resonance conditions are both evident. The form function
predicts a maxirnum amplitude of 4.26 times that of the incident bursts. We do see that as

input burst gets longer, the amplitude of the backscattering reaches the limit as shown in
Fig.17c.

The form function calculated for the SS440c shell using the current ray model fails
to recover the form function from the exact PWS calculation in the x range of 70--74 20,
One possible cause of the anomalous behavior near x = 71 is due to the fact that the phase
velocity becomes large for the sy Lamb wave, hence the trace-velocity matching angle 6;
defined in Eq.(5.1) becomes small and the group velocity for the s; Lamb wave becomes
negative around x = 71. It has been suggested (P.L.Marston, private communication) that
the energy of the burst is taking a short path and travelling along the path of BC in Fig.7a
directly without circumnavigating the shell at all. This is one ray mechanism for producing
prompt radiation, which was not included in the analysis in Ref.20. The computed

backscattered waves from a real SS440C shell for xg = 71.0 and 76.8 are shown in Fig.18
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which is far more complicated than the case of a SS440c/fluid shell. Difference between
elastic and fluid shell results is rapidly evident in the time domain. It is seen by t» 1.5,
which means there is a prompt mechanism for scattering in the elastic shell not included in
the fluid case. We also see that the prompt radiation may be out of phase with the specular
reflection therefore the effect can be either constructive or destructive, which is the case of

aluminum shell and SS440C shell respectively.
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Chapter 6
Discussion and Conclusion

The canonical problem of the backscattering of a short tone burst from elastic
spherical shells has been computationally modeled and transient scattered waves has been
calculated. The algorithms used are simple trapezoidal method to calculate the Fourier
integral and FFT routines. Both methods have turned out to be equally successful, except
that the physical meanings are more clear in the former case while the latter can do the
transformations much faster. Most results presented in the report are from the calculation of
FFT routines. No fundamental complications is in this approach. Any imperfection in the
calculation appears to be due to the necessity of assuming a finite bandwidth. This was

taken to be much larger than the carrier frequency for all cases shown.

Previous measurements by Williams and Marston for the tungsten carbide sphere
and by S. Kargl and P.L.Marston for the 16.2%-thick elastic SS440c shell have been
confirmed. Along with Fourier Transform calculations, a ray model of Sun and Marston19
for the backscattering from thin shells has been carefully investigated. The results
demonstrate that the thin elastic shells like 5%-thick SS440c and 2.5%-thick SS304 shells
support ag' wave which can be "creeping” and "trapped” waves. The phase and group
velocities for ag' are both close to the sound speed in the surrounding water. This particular
surface wave contributes to the form function in the form of a big hump or mid-frequency
enhancement for thin shells. The central frequency of the hump varies inversely with the
thickness of the shell but the backscattered echoes due to the effect have an almost constant

arrival time (in units of a/c) relative to the specular reflection. In the system point of view,
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the scatterer is like a band-pass filter. The frequency components in the range of the hump
are relatively enhanced. Because of its large magnitude, this enhancement and other
properties of the associatzd surface wave may be of great practical use. Appendix C shows

that the enhancement also contributes in a distinct way to the sphere's impulse response.

The thickness resonance conditions are also examined by computing the
backscartering under those conditions. For the fluid stainless steel and aluminum shell
cases, the agreement between the calculated backscattering and the prediction by PWS
form function under the longitudinal thickness resonance is good. Since the fluid shell case
has been well modeled by a ray method, this also indicates a good agreement with the ray
prediction. A prompt radiation that is currently being modeled appears to be important in
clastic shell cases and the amplitude of the computed backscattering for the aluminum shell
does reach the limit predicted by the PWS form function. The case of a thick elastic
§S440C shell (16.2%-thick) is more complicated in that the prompt radiation appears to

interfere destructively with the specular reflection.




Appendix
A. List of programs

Al. Program computing the form function of elastic spheres

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCceeeecelccececceececcecccececceecece

o o
C THIS PROGRAM CALCULATES FORM FUNCTIONS USING CHIVERS C
C PROGRAMS. o
C Cc

CCCCCCCCCCCCCCCCCCCCCCCCCCCeeceeeeceeeeeceecceeceeeeeceececece
C
IMPLICIT DOUBLE PRECISION (P)
DIMENSION PB(800),PCB(800),PSB(800)
c REAL KAM
COMPLEX CFAC
DATA RHO,VC,VS,VW/13.80,6860.0,4185.0,1476.0/
c data rho,vc,vs,vw/7.70, 5960.0,3240.0,1410.0/
RH=1.0/ (RHO*2.0)
RAT1= vW/ve
RAT2= VW/Vs
XMAX= 400.0
X0=0.0
K=0
10 k=k+1
X=X0+k*0.05
T=1.25*%X
X1=RAT1*X
X2=RAT2*X
X2S=X2*%*2
XSN=SIN(X)
XCS=CO0S (X)
CALL BESS(X,PB,T)
TERM= (XSN/X) /PB(1)
BN1= PB(2) *TERM
CALL BESS(X1,PCB,T)
CBN1= PCB(2)/PCB(1)
CALL BESS(X2,PSB,T)
SNNO=-XCS/X
XSIGN=1.0
SBET=0.0
SALP=0.0
N=0
SUM=0.0
CALL STVAL(X,X1,X2,ALPN,BETN,CBN1,BN1,SNN1,RH, XSN, X2S, XCS)
20 CONTINUE
CBN2= PCB(N+3)/PCB(N+2)
Q=FLOAT (N+1)
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90

100

40

50

ANUM= (Q#*CBN1) - (X1*CBN2)
ADEN=( (Q-1.0) *CBN1) - (X1*CBN2)

DNUM= ( ( (X25/2.0) -Q* (Q-1.0) ) *CBN1)=(2.0*X1*CBN2)
SBN1=1.0 ‘

SBN2= PSB(i+3) /PSB(N+2)
BNUM=(2.0#Q#* (Q+1.0) ) *SBN1

EDEN=( ((2.0%(Q##*2))=(X25+2.0) ) *SBN1)+(2.0*SBN2#X2)
ENUM=2.0#Q#(Q+1.0) *(((1.0-Q) *SBN1)+ (X2*SBN2))
FN1=X2S*RH* ( (ANUM/ADEN) - (BNUM/EDEN) ) / ( (DNUM/ADEN)
&- (ENUM/EDEN) )

CONTINUE

BN2=_ _ . PB(N+3)*TERM

GN1=( (FN1-Q) *BN1)+ (X*BN2)

BN1=BN2

SNN2=( ((2.0%Q)+1.0) *SNN1/X) -SNNO

HN1=( (FN1-Q) *SNN1) + (X*SNN2)

SNNO=SNN1

SNN1=SNN2

DEN=(GN1#%#2)+ (HN1##2)

ALPN1=-(GN1#%+2)/DEN

BETN1=~ (GN1*HN1} /DEN

ADD=Q* (ALPN+ALPN1+(2.0*ALPN*ALPN1)+(2.0*BETN*BETN1))
FAC=XSIGN*(2.0%Q-1.0)

SALP=SALP+FAC*ALPN

SBET=SBET+FAC*BETN

ALPN=ALPN1

BETN=BETN1

SUM=SUM+ADD

IF ((ABS(ADD/SUM)).LT.1.0E-8) GO TO 90

J=0
N=N+1

XSIGN=-XSIGN

GO TO 20

J=J+1

IF (J.EQ.S5) GO TO 100
N=N+1

XSIGN==-XSIGN

GO TO 20

YP=(=4.0/ (X**2) ) *SUM

FAC=~XSIGN*(2.0*Q+1.0)
SALP=SALP+FAC*ALPN1
SBET=SBET+FAC*BETN1
CFAC=CMPLX (SBET, =SALP) * (2.0/X)
FINF=CABS (CFAC)

KAM (K) =X

FABS (K) =FINF

WRITE(7,40) KAM(K),FABS(K)
WRITE(7,40) X,CFAC
FORMAT(  3f£12.6)
IF(X.Gt.XMAX) GO TO 50

GO TO 10

CONTINUE
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STOP
END

SUBROUTINE STVAL(X,X1,X2,ALPN,BETN,CBN1,BN1,SNN1,RH,XSN,X2S
&, XCS)
TERM=CBN1#X1
FN=-X2S*RH*TERM/ ( (X2S/2.0) -2.0*TERM)
SNN1=~( (XCS/ (X**2) )+ (XSN/X))
GN=(FN* (XSN/X) ) + (BN1#X)
HN= (= (FN*XCS) /X)+ (X*SNN1)
DEN=(GN#*#*2) + (HN**2)
ALPN=~ (GN**2) /DEN
BETN=~ (GN*HN) /DEN
_ RETURN
END

SUBROUTINE BESS(X,PA,T)

IMPLICIT DOUBLE PRECISION (P)

DIMENSION PA(800)

L=IFIX(T)+15

PA(L+2)=0.0

PA(L+1)=1.0E-30

DO 10 I=1,L

M=(L+1)-I

R=FLOAT (M)

PA(M)=(((2.0*R)+1.0) *PA(M+1)/X) -PA (M+2)
10 CONTINUE

RETURN

END




+
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A2. Program computing the form function of elastic spherical shells

REAL#*8 X,XT,XL,QT,QL,BA,RHO, RHOE, XMIN, XMAX, DX, JX (900),
JXT(900) ,JXL(900) ,JQT(900) ,JQL(900),YX(900),YXT(900),
YXL(900) ,YQT(900) ,YQL(900),D(5,5),DI(5,5),
¢, DETDR, DETDT,

CT,CL, XTS, QTS,DNR, DNI, COEF, FORM, SUMR, SUMI

INTEGER NMAX,I,J,MAX,K,INDX(5)

C=1.4790D0

CT=3.1410D0

CL=5.6750D0

RHO=1.0D0

RHOE=7.570D0

BA=0.9750D0

XMIN=478.0D0
XMAX=480.0D0
X=XMIN
DX=0.050D0

MAX=INT ( (XMAX-XMIN) /DX)
DO 1000 I=1, MAX

X=X+DX
XT=X*C/CT
XL=X*C/CL
QT=XT*BA
QL=XL*BA
QTS=QT*QT
XTS=XT*XT

IF ( (0.20 .LT. X) .AND. (X .LT. 8.0)) THEN
NMAX=2+NINT (X+4 .0*DEXP (DLOG (X)/3.0))
ELSE
NMAX=3+NINT (X+4.05*DEXP(CLOG (X)/3.0))
ENDIF

CALL BESSEL(NMAX+2,X,JX)

CALL BESSEL(NMAX+2,XT,JXT)
CALL BESSEL(NMAX+2,XL,JXL)
CALL BESSEL(NMAX+2,QT,JQT)
CALL BESSEL(NMAX+2,QL,JQL)

CALL NEUMANN (NMAX+2,X, YX)

CALL NEUMANN (NMAX+2,XL, YXL)
CALL NEUMANN (NMAX+2,XT, YXT)
CALL NEUMANN (NMAX+2,QL, YCL)
CALL NEUMANN (NMAX+2,QT, YQT)

SUMR=0.0
SUMI=0.0
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DO 500 J=1, NMAX

FI=DBLE(J~-1)
D(1,1)=(RHO/RHOE) *XTS*JX (J)
D(1,2)=(2.0*FJ*(FJ-1.0)~XTS) *IXL(J)
D(1,2)=D(1,2)+4.0*XL*IXL(J+1)
D(1,3)=(2.0*FJ*(FJ~1.0) ~XTS) *YXL(J)
D(1,3)=D(1,3)+4.0*XL*YXL(J+1)
D(1,4)=(FJ-1.0) *IXT(J) -XT*IXT (J+1)
D(1,4)=2.0*FJ*(FJ+1)*D(1,4)
D(1,5)=(FJ-1.0) *YXT (J) =XT*YXT (J+1)

D(1,5)=2.0*%FJ* (FJ+1)*D(1,5)

D(2,1)==FI*IX(JT) +X*IX(J+1)

D(2,2)=FI*IXL(J) -XL*IXL(J+1)
D(2,3)=FI*YXL(J)-XL*YXL(J+1)

D(2,4)=FJ*(FJ+1.0) *IXT(J)

D(2,5)=FJI*(FJ+1.0) *YXT(J)

D(3,1)=0.0D0

D(3,2)=2.0%((1.0-FJ) *IXL(J)+XL*IXL(J+1))
D(3,3)=2.0%((1.0-FJ)*YXL(J)+XL*YXL(J+1))
D(3,4)=(XTS-2.0% (FJ**2)+2,0) *TXT (J) -2. 0*XT*JIXT (J+1)
D(3,5)=(XTS=2.0*(FJ**2)+2.0) *YXT (J)-2.0*XT*YXT (J+1)
D(4,1)=0.0D0

D(4,2)=(2.0*FJ*(FJ~-1.0)~QTS) *JQL(J)
D(4,2)=D(4,2)+4.0*QL*JQL(J+1)
D(4,3)=(2.0*FJ*(FJ-1.0)~QTS) *YQL(J)
D(4,3)=D(4,3)+4.0*QL*YQL(J+1)
D(4,4)=2.0%FJ*(FJ+1.0) *((FJ~1.0) *JQT(J) ~QT*JQT (J+1))
D(4,5)=2.0*FJ*(FJ+1.0) *((FJ-1.0) *YQT (J) -QT*YQT (J+1))
D(5,1)=0.0D0

D(5,2)=2.0*((1.0-FJ) *JQL(J)+QL*JQL(J+1))
D(5,3)=2.0%((1.0-FJ)*YQL(J)+QL*YQL(J+1))
D(5,4)=(QTS-2.0*(FJ**2)+2.0) *JQT (J) -2.0*QT*JQT (J+1)
D(5,5)=(QTS-2.0% (FJ**2)+2.0) *YQT(J) -2.0*QT*YQT (J+1)

DI(1,1)=(RHO/RHOE) *XTS*YX (J)

DI(2,1)==-FI*YX(J)+X*YX(J+1)

DI(3,1)=0.0D0

DI (4,1)=0.0D0

DI(5,1)=0.0D0

DO 200 K=2, S
DI(1,K)=D(1,K)
DI(2,K)=D(2,K)
DI(3,K)=D(3,K)
DI(4,K)=D(4,K)
DI(5,K)=D(5,K)

CONTINUE

CALL LUDCMP(D,5,5,1INDX, DETDR)
CALL LUDCMP(DI,S,S,INDX,DETDI)

DO 300 K=1, §
DETDR=DETDR*D (XK, K)
DETDI=DETDI*DI (K, K)




300

500

1000
2000

CONTINUE

DNR=DETDR

DNI=DETDI

COEF=((=1.0)##(J+1))*(2.04FJ+1.0)

SUMR=SUMR+COEF* (DNI/ (DNR+DNI* (DNI/DNR)))

SUMI=SUMI+COEF* (DNR/ (DNR+DNI#(DNI/DNR)))
__CONTINUF

FORM=(2.0/X) *DSQRT (SUMR**2+SUMI #%2)
SUMR= SUMR*2.0/X
SUMI= SUMI*2.0/X

WRITE(7,2000) X,SUMR,SUMI

CONTINUE

FORMAT (3F12.6)

END

10
30

10

SUBROUTINE NEUMANN(N, X, YN)

REAL#*8 X, YN(900)

INTEGER I,N

IF ( (X .LT. 0.0) .OR. (N .LT. 2) ) THEN
WRITE(6,*) ’‘FAILURE IN NEUMANN FCN ROUTINE’
GOTO 30

ENDIF

YN (1) ==DCOS (X) /X

YN (2)==DCOS (X)/ (X**2) ~DSIN (X)/X

DO 10 I=1,N=-1
YN(I+2)=((2.0%*DBLE(I-1)+3.0)/X)*YN(I+1)-YN(I)
CONTINUE

RETURN

END

SUBROUTINE BESSEL(N,X,JN)

REAL#*8 X,JN(900),RATIO,JO,JIMX,IMX1
INTEGER I,MAX,N,NT
JIMX=1.0
JMX1=1.0D-100
MAX=N+20
IF ( (X .LT. 6.0) .OR. (N .GT. 9:0) ) THEN
WRITE(G,*) ’FAILURE IN BESSEL FCN ROUTINE’
GOTO 90
ENDIF
J0=DSIN(X)/X
IF (N .GT. INT(X)) THEN
DO 10 I=1,MAX-1
NT=MAX-I
JIN(NT)=((2.0%*DBLE(NT)+1.0)/X) *IMX~IMX1
JIMX1=IMX
JIMX=JN (NT)
CONTINUE
RATIO=JO0/JIN (1)
DO 20 I=1,N+1
JN(I)=RATIO*JIN(I)

92
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90
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CONTINUE

ELSE

JN(1)=J0
JN(2)=DSIN(X)/(X**2)~DCOS (X) /X
DO 35 I=1, N-2

IN(I+2)=((2.0%DBLE(I)+1.0)/X)*IN(I+1)=-IN(I)

CONTINUE
ENDIF
RETURN
END

SUBROUTINE LUDCMP(A,N,NP, INDX,D)

IMPLICIT REAL*8 (A-H, 0~2)
PARAMETER (NMAX=100, TINY=1,0D-100)
DIMENSTON A(NP,NP),INDX(N),VV(NMAX)
D=1.0
DO 12 I=1, N

AAMAX=0.0
DO 11 J=1, N

IF (DABS(A(I,J)) .GT. AAMAX) AAMAX=DABS(A(I,J))

CONTINUE
IF (AAMAX .EQ. 0.0) PAUSE ’SINGULAR MATRIX'’
VV(I)=1.0/AAMAX
CONT1NUE
DO 19 J=1, N
IF (J .GT. 1) THEN
DO 14 I=1, J-1
SUM=A(I,J)
IF (I .GT. 1) THEN
DO 13 K=1, I-1
SUM=SUM=-A (I,K)*A(K,J)
CONTINUE
A(I,J)=SUM
ENDIF
CONTINUE
ENDIF
AAMAX=0.0
DO 16 I=J, N
SUM=A(I,J)
IF (J .GT. 1) THEN
DO 15 K=1, J-1
SUM=SUM=-A(I,K)*A(K,J)
CONTINUE
A(I,J)=SUM
ENDIF
DUM=VV (T) *DABS (SUM)
IF (DUM .GE. AAMAX) THEN
IMAX=1
AAMAX=DUM
ENDIF
CONTINUE
IF (J .NE. IMAX) THEN




DO 17 K=1, N
DUM=A ( IMAX, )
A(IMAX,K)=A(J,K)
A(J,K)=DUM
17 CONTINUE
D=-D
VV (IMAX) =VV(J)
ENDIF
INDX (J) =IMAX
IF (J_.NE. N) THEN
IF (A(J,J) .EQ. 0.0) A(J,J)=TINY
DUM=1.0/A(J,J)
DO 18 I=J+1, N
A(I,J)=A(I,J)*DUM
18 CONTINUE
ENDIF
19 CONTINUE
IF (A(N,N) .EQ. 0.0) A(N,N)=TINY
RETURN
END




AJ. Program computing the form function of fluid spherical shells

REAL#8 X,XL,QL,BA, RHO, RHOE, XMIN , XMAX, DX, JX (600) ,
+ JXL(600),JQL(600),YX(600),YXL(600),YQL(600),D(3,3),DI(3,3),
+ C,DLTDR,DETDI,CL,DNR,DNI,COEF, FORM,SUMR, SUMI

INTEGER NMAX,I,J,MAX,K,INDX(3)
C=1.4790D0

RHO=1.000

RHOE=7.840D0

CL=5.854D9

BA=0.838D0

XMIN=0.0DO

XMAX=400.0D0

X=XMIN

DX=0.050D0

PI=3,1415926
MAX=INT ( (XMAX-XMIN) /DX)
DO 1000 I=1,MAX

X=I*DX
XL=X*C/CL
QL=XL#*BA

IF ( (0.20 .LT. X) .AND. (X .LT. 8.0)) THEN
NMAX=2+NINT (X+4 .0*DEXP (DLOG (X)/3.0} )

ELSE !

NMAX=3+NINT (X+4 .05*DEXP (DLOG (X)/3.0))

ENDIF

CALL BESSEL(NMAX+2,X,JX)
CALL BESSEL(NMAX+2,XL,JXL)
CALL BESSEL(NMAX+2,QL,JQL)

CALL NEUMANN (NMAX+2, X, YX)
CALL NEUMANN (NMAX+2,XL,YXL)
CALL NEUMANN (NMAX+2,QL, YQL)

SUMR=0.0
SUMI=0.0

DO 500 J=1, NMAX
FJ=DBLE (J-1)
D(1,1)=(RHO/RHOE) * (C/CL) *IX(J)
D(1,2)=IXL(J)

D(1,3)=YXL(J)

D(2,1)=FJ*JX(J)/X-IX(JT+1)
D(2,2)=FJ*JXL(J)/XL~JXL(J+1)
D(2,3)=FJ*YXL(J)/XL-YXL(J+1)
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D(3,1)=0.0D0
D(3,2)=JQL(J)
D(3,3)=YQL(J)

DI(1,1)=(RHO/RHOE) * (C/CL) *YX(J)
DI(2,1)=FJI*YX(J)/X=¥YX(J+1)
DI(3,1)=0.0D0
DO 200 K=2, 3
DI(1,K)=D(1,K)
DI(2,K)=D(2,K)
DI(3,K)=D(3,K)
continue

CALL LUDCMP(D,3,3,INDX,DETDR)
CALL LUDCMP(DI,3,3,INDX,DETDI)

DO 300 K=1, 3
DETDR=DETDR*D (K, K)
DETDI=DETDI#*DI (X, K)
CONTINUE
DNR=DETDR
DNI=DETDI
COEF=((=1.0)#**(J+1))*(2.0*FJ+1.0)
SUMR=SUMR+COEF* (DNI/ (DNR+DNI* (DNI/DNR)))
SUMI=SUMI+COEF* (DNR/ (DNR+DNI*(DNI/DNR)))
CONTINUE

SUMR=(2.0/X) *SUMR
SUMI=(2.0/X) *SUMI
write (7,2000) x,sumr,sumi
CONTINUE
FORMAT (3F12.6)
END

SUBROUTINE NEUMANN (N, X, YN)

REAL*8 X,YN(600)

INTEGER I,N

IF ( (X .LT. 0.0) .OR. (N .LT. 2) ) THEN
WRITE(6,*) ‘FAILURE IN NEUMANN FCN ROUTINE’
GOTO 30

ENDIF

YN (1) =-DCOS (X) /X

YN (2)==-DCOS (X)/ (X*#2)-DSIN(X)/X

DO 10 I=1,N-1
YN(I+2)=((2.0*DBLE(I-1)+3.0)/X)*YN(I+1)-YN(I)
CONTINUE

RETURN

END




SUBROUTINE BESSEL(N,X,JN)

REAL*8 X,JN(600),RATIO,JO,IMX,IMX1
INTEGER I,MAX,N,NT
IMX=1.0
JMX1=1.0D-100
MAX=N+20
IF ( (X .LT. 0.0) .OR. (N .GT. 500) ) THEN
WRITE(6,*) ’‘FAILURE IN BESSEL FCN ROUTINE’
GOTO_90
ENDIF
JO=DSIN (X)/X
IF (N .GT. INT(X)) THEN
DO 10 I=1,MAX-1
NT=MAX-I
IN(NT)=((2.0*DBLE(NT)+1.0) /X) *IMX=-IMX1
JIMX1=JMX
JIMX=JN (NT)
10 CONTINUE
RATIO=J0/JIN(1)
DO 20 I=1,N+1
JIN(I)=RATIO*JIN(I)
20 CONTINUE
ELSE
JIN(1)=J0
JN(2)=DSIN(X)/ (X**2)-DCOS (X) /X /
DO 35 I=1, N-2
JIN(I+2)=((2.0*DBLE(I)+1.0)/X)*IN(I+1)-JIN(I)
35 CONTINUE
ENDIF
90 RETURN
END

SUBRQUTINE LUDCMP(A,N,NP,INDX,D)

IMPLICIT REAL*8 (A-H, 0-2)
PARAMETER (NMAX=100, TINY=1.0D=-150)
DIMENSION A(NP,NP),INDX(N),VV(NMAX)
D=1.0
DO 12 I=1, N
AAMAX=0.0
DO 11 J=1, N
IF (DABS(A(I,J)) .GT. AAMAX) AAMAX=DABS(A(I,J))
11 CONTINUE
IF (AAMAX .EQ. 0.0) PAUSE ’SINGULAR MATRIX’
VV(I)=1.0/AAMAX
12  CONTINUE
DO 19 J=1, N
IF (J .GT. 1) THEN
DO 14 I=1, J-1
SUM=A(I,J)
IF (I .GT. 1) THEN
DO 13 K=1, I-1
SUM=SUM-A(I,K) *A(K,J)




13

14

‘15

16

17

18
19

CONTINUE
A(I,J)=SUM
ENDIF
CONTINUE
ENDIF
AAMAX=0.0
DO 16 I=J, N
SUM=A(I,J)
IF (J .GT. 1) THEN
DO 15 K=1, J-1
 SUM=SUM-A(I,K)*A(K,J)
CONTINUE
A(I,J)=SUM
ENDIF
DUM=VV {I) *DABS (SUM)
IF (DUM .GE. AAMAX) THEN
IMAX=I
AAMAX=DUM
ENDIF
CONTINUE
IF (J .NE. IMAX) THEN
DO 17 K=1, N
DUM=A (IMAX, K)
A(IMAX,K)=A(J,K)
A(J,K)=DUM
CONTINUE
D=-D
VV (IMAX) =VV (J)
ENDIF
INDX (J) =IMAX
IF (J .NE. N) THEN
IF (A(J,J) .EQ. 0.0) A(J,J)=TINY
DUM=1.0/A(J,J)
DO 18 I=J+1, N
A(I,J)=A(I,J)*DUM
CONTINUE
ENDIF
CONTINUE
IF (A(N,N) .EQ. 0.0) A(N,N)=TINY
RETURN
END
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Ad. Program computing transient scattering: integration

REAL M,A,B,X0,X,X1,X2, TWOPI,G,REG,IMG, ARG,REF,IMF,REAL,
$ IMAG, P(5000),B0O
INTEGER I,N,J,N1
WRITE(S5,10)
10 FORMAT(’READ IN N & N1’)
READ (5,20) N,N1
20 FORMAT(2I4)
X0=49.1
B0=4.
TWOPI=2+%3,1415926
M=TWOPI*B0/X0
X1=0.05
T1=20*M/N1
DO 200 J=1,N1
P(J)=00.0
200 CONTINUE
DO 100 I=1,N
T = =6.*M
X=I*X1
READ (9,500 ) X,REF,IMF
REF=-REF
IMF=+IMF
500 FORMAT(3F12.6)
X2=X-X0
X2=ABS (X2)
A=X+X0
B=X-X0
IF (X2.LT.1.0E-8) GO TO 30
REG=(1-COS (M*A)) /A-(1-COS (M*B) ) /B
IMG=SIN(M*A) /A-SIN(M*B)/B
IF(REG.EQ.0.0) GO TO 25
ARG  =ATAN2(IMG, REG)
GO TO 28
25 ARG =3.1415926/2
28 ARG = ARG/3.1415926
GO TO 40
30 REG=(1~COS(M#*A))/A
IMG=SIN(M*A) /A-M
40 IMG=-IMG
G=(REG*#*2+IMG**2) *%0.5
ARG = ATAN2(IMG, REG)/3.1415926
WRITE (7,50) X,G

REAL=REG*REF -IMG*IMF
IMAG=IMG*REF +REG*IMF
DO 300 J=1,N1
P(J)=(REAL*COS (X*T)+IMAG*SIN (X*T) ) *X1+P(J)
T=T+T1
300 CONTINUE
100 CONTINUE
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T= -6.0%M-T1
DO 400 J=1,N1
T=T+T1
P(J)=P(J)/TWOPI
.. . .WRITE(8,50) T, P(J)
400 CONTINUE
50 FORMAT(2F12.6)
STOP
END

Program A4. This program computes the transient backscattering from any scatterer
for a BO-cycle sine burst with a carrier frequency xq. A simple trapezoidal method
is used in doing the integration in Eq.(3.10). The disk defined as device 9 contains
the data for the form function of any scatterer. The N and N1 are parameters which
specify, respectively, the number of data for the form function and the number of

points you want for each cycle of the incident burst.
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AS. Program computing transicnt scattering: FFT routines

INTEGER I, N, M, N1
REAL CONST, TWOPI, X0;B, UL,T,T1,MODSEQ ,MODCOEF,KA,
$ REF,IMF,T2,Y
COMPLEX C, COEF(34280),H, SEQ(34280)
EXTERNAL CONST, FFTCF, FFTCB
COMMON /WORKSP/ RWKSP
REAL RWKSP/206000)
CALL IWKIN(206000)
X0=49.1
B=4.
M=INT(B*25.)
N=INT (X0*M/B/0.05)
IF (N/2.GT.0) N=N+1
TWOPI= 2,0*CONST(’PI’)
UL=TWOPI*B/X0
T =0.
T2=0.
T1=UL/M
Y = 3*FLOAT (M) /UL
N1= IFIX(Y)+1
DO 30 I=1,N1
SEQ(I)=0.
MODSEQ =REAL(SEQ(I))
WRITE (6,300) T,MODSEQ
T=T+T1
30 CONTINUE
DO 10 I=N1+1 ,N1+1+ M
SEQ(I)= SIN(XO0*T2)
MODSEQ  =REAL(SEQ(I))
WRITE (6,300) T,MODSEQ
T2=T2+T1
T =T +T1
10 CONTINUE
DO 20 I=N1+2+M , N
SEQ(I)=0.
MODSEQ =REAL(SEQ(I))
IF (T.GT.5) GO TO 20
WRITE (6,300) T,MODSEQ
T=T+T1
20 CONTINUE
CALL FFTCF (N, SEQ, COEF)
DO 1000 I=1,
KA=FLOAT (I~ 1)*X0*M/B/FLOAT(N)
MODCOEF =CABS (COEF(I))/FLOAT (M)
BETA=ATAN2 (AIMAG (COEF (1)), REAL(COEF(I)))/CONST(’PI’)*180
WRITE (7,300) KA,MODCOEF
WRITE (2,300) KA,BETA
1000 CONTINUE
DO 4000 I=2,8001




5000
4000

3000

300
2000
2500

Program AS. This program computes the transient backscattering from any scatterer
for a B-cycle sine burst with a carrier frequency xo, Two FFT routines, namely,
FFTCF and FFTCB, in the CMS main frame Fortran routines bank are utilized.
The parameters N and M specify, respectively, the total number of points for the
input sequence and the number of points per cycle for the input burst. The disk
defined as device 9 contains the data for the form function of any scatterer. The sign

of these data may have to be changed depending on the time convention the form

READ (9, 5000) X,REF,IMF

FORMAT (3F12.6)

COEF (I)=COEF (I) *CMPLX (~REF, =IMF)
CONTINUE

DO 3000 I= 8001 ,N
COEF(I)=(0.,0.)

'CONTINUE

CALL FFTCB (N,COEF,SEQ)
T=-~UL/FLOAT (M)

DO 2000 I=1,N
SEQ(I)=SEQ(I)*2./FLOAT(N)
MODSEQ = REAL(SEQ(I))

T= T +T1

IF (T.GE.10.) GO TO 2500
WRITE(8,300) T, MODSEQ
FORMAT (2F12.6)

CONTINUE

STOP

END

function program is using.
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AG6. Nlustration about writing and using the programs

The program computing the form function of an elastic sphere was written by
Chivers and Anson22, Both the program computing the form function of elastic spherical
shells and that of fluid shells were written by S. Kargl. They are presented here just for
user's convenience. These programs are found written in ¢ -10t time convention whose
results can be used in present computation without any change. To compute the form
function for high ka values, which is often the case for transient calculations, one needs to
expand the dimension of the arrays defined in the programs. But this is not limitless. These
programs can not calculate the form function for arbitrarily high ka values. This could be a
problem sometimes. As in the case of resonance scattering by aluminum shell, the carrier
frequency is as high as xg = 340, but the form function can only be calculated up to x =
480 for the materialvconstants we are using. The cut-off high frequency of 480 gives us a
real incident burst as shown in Fig. A1l which is far from perfect. thﬁ interpreting the
transient scattering in this case, one has to take into the consideration the no longer small

difference between the ideal and real incident bursts.

The programs computing the transient scattering are also written in e-iwt time
convention but the FFT routines called from IMSL bank are in e+iwt time convention.
Since our input is a real sequence, the difference in time convention gives a different sign
for the imaginary part of the result. That is why the sentence img = -img is used in the

program calling the routines.

In order for the set of samples of a signal to correctly represent that signal, the
sampling theorem has to be satisfied. Since an upper limit of integration or summation xmax

has been assumed, the sampling frequency can not be less than 2xmax. Suppose we want
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L points per cycle for the incident burst, then the sampling theorem states the following
condition

LXo 2 2Xmax _ (A6.1)

Throughout the report, xmax = 400 and Ax = 0.05 have been chosen except for the
aluminum and aluminum/fluid shell cases where xmax = 480 and Ax = 0.1. When xg < 40,
we can either let L be greater or reduce the value of xmax a little bit. We decided to adopt the
former solution, namely, changing L while keeping xmax = 400. Examples are Fig.6d

where L = 40 and Fig 5c(a),11a,11b,B1(a) and B1(b) where L = 25.

As stated in Chapter 4, large value of N could be a calculation problem. A 10-
cylinder account on the CMS main frame can only support the calculation of N=34000.
When computing the backscattering from aluminum or aluminum/fluid shell, the carrier
frequencies we are interested in are xg = 302 and 340. Since we have N = Lxg/Ax, L has
to be decreased and Ax has to be increased in order to keep N under this limit. Therefore
Ax = 0.1 and L = 10 have been chosen, which also assures the sampling theorem

condition for xmax = 480.

It should be pointed out that the upper limit of the summation in Eq.(4.15) should

be the same as xmax. In other words AxN/2 = xmax, or Lxg = 2xmax. Fortunately, the
components above xmax for all the bursts considered in this report is small enough that as
far as the physics in the scattering process is concerned, the inequality (A6.1) can be

regarded as the proper condition which has been assured throughout the work.
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B. Additional Data and Graphs

Bl. Mid-frequency enhancement of the backscattering for 4-cycle burst
B2. Resonance backscattering from aluminum/fluid shell: 1-cycle

B3. Resonance backscattering from aluminum/fluid shell: 4-cycle

B4. Resonance backscattering from $S440c/fluid shell: 1-cycle

BS. Resonance backscattering from SS440c/fluid shell: 4-cycle

B6. Resonance backscattering from real aluminum shell: 1-cycle

B7. Resonance backscattering from real aluminum shell: 4-cycle

B8. Resonance backscattering from rea] SS440c shell: 1cycle

B9. Resonance backscattering from real SS440c shell: 4-cycle
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C. Impuilse Response and Form Function

Eq.(3.7) states that p'(t) and F(x) are a Fourier Transform pair when G(x) = 1, or
in other words, when incident wave is a Dirac delta function §(t). Therefore we would
expect to obtain the impulse response of the scatterer by taking the inverse Fourier
Transform of the form function. Considering the time reference point, we let the incident
wave starting at t =3 be a half cycle sine wave with xg = 200 and L = 4. It is equivalent to
a delta function with nonzero value 1 only at t© = 3. Its spectrum was checked to be unity
for all x value. When taking the inverse Fourier Transform, the cut-off frequency is chosen
to be 400. Computed backscattering, or the impulse response of a 2.5%-thick SS304 shell
is shown in Fig.C1. We clearly see a low frequency response starting at t = 5 which is the
manifestation of existence of a mid-frequency enhancement. The measured interval
between the center of the response, assumed to be right at the peak indicated by an arrow,
and the specular reflection is 4.44. The excellent agreement with the ray model calculation
value (4.467) strongly suggests the validity of the coincident ray model.

Fig. 5c(a), 5c(b) and 5c(c) suggest a very low frequency enhancement. The
impulse respons;: of a 16.2%-thick SS440C shell, shown as Fig.C2, was computed by
choosing a half-cycle sine burst with xg = 200 and L = 4. A low frequency response is
evident, which shows that there does exist a low frequency enhancement for such a thick

shell.
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Fig.C1. The impulse response of a 2.5%-thick SS304 shell.
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Fig.C2. The impulse response of a 16.2%-thick SS440C shell.
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D. Additional Evidence of Mid-Frequency Enhancement:
Arrival Time Check With Ray Model Calculation

The coincident ray model for the mid-frequency enhancement has predicted that
relative to the specular reflection the arrival time of the echo due to the mid-frequency
enhancement can be described by tq = 2 + nc/cgy, The calculated time interval between the
center of the specular reflection and the center of the coincident echo by ray model is 4.467
for 2.5%-thick SS304 shell and xo = 46.0. Fig.11d shows that at xo = 46.0, the echo due
to the mid-frequency enhancement is quite symmetric therefore it is easy to locate the center
of the echo. Actually it can be determined as t = 6.768 by looking at the Table 4.4 and the
center of the specular reflection can be calculated as T =1 + 10 x 21t/xg = 2.366. The time
interval between them is therefore 4.402 which is pretty much the same as the ray model
prediction. This simple check gives additional evidence of the validity of the coincident ray
model.

of 1
‘-\ Fig.D1. The arrival time of
7+ various surface waves for
| 2.5%-thick SS304 shell. The
\ solid curve is for / = ag, the
6r short-dashed curve is for [ =
\ o, and the short-long-dashed
st curve is for I = ag'.
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3 =
2 -
-
II
LI
]
]
0 2 L 4. 1 1 s 4
0 20 40 60 80 100




134

E. More on Prompt Radiation Effect

We have seen in section 5.5 that the prompt radiation can be out of phase with the
specular reflection, which makes it difficult to infer the amplitude of the prompt radiation
wave for the case of the backscattering from a SS440C shell (Fig.18a). In section 5.4 we
have assumed a fluid shell to remove the effects due to the elastic surface waves and
transverse waves. Here we want to single out the prompt radiation from the specular
reflection background, which can be achieved by subtracting the backscattering by a fluid
shell from that by an elastic shell. The results for aluminum and SS440C shell cases have
been shown as Fig.E. The prompt radiation can be clearly seen for both aluminum (xg =
302) and SS440C (xg = 71.0) cases. Comparison of Figs. E1 and E2 for the aluminum
case shows clear evidence of a substantial prompt contribution for xg = 302 and a much
weaker prompt contribution for xg = 340. It is interesting to notice that Figs. E1 and E2
display a qualitative similarity with the burst response of a damped harmonic oscillator near
and away from resonance respectively. For a review of the burst response of such systems

see e.g. Pippard?3.

The arrival of other surface wave contributions makes the steady-state prompt
radiation contribution hard to be determined for the SS440C case. Shown in Fig.ES is the
case of 80-cycle incident burst. If the backscattering reaches its steady state right before the
burst turns off, which is a suggestion of the figure although it can not be fully trusted, then
the measured amplitude value is 2.0. Neglecting the relatively weak contribution of other
surface waves in this time interval, the value 2.0 becomes the estimate of the prompt
radiation contribution. This value is remarkably close to the value of 1.95 at xo = 71.0
implicit in Fig.7 of Ref.20. That is the magnitude of the error in the steady-state ray

synthesis, which neglects prompt radiation contribution. Thus 1.95 and 2.0 are consistent

estimates of the prompt contribution for the $5440C case.
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